MATH 590: QUIZ 7 SOLUTIONS

Name:

For the matrix $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$, find:

1. The characteristic polynomial $p_{A}(x)$. (3 points)

Solution. $p_{A}(x)=\left|\begin{array}{ccc}x-1 & 0 & -1 \\ 0 & x-1 & 0 \\ -1 & 0 & x-1\end{array}\right|$. Expanding along the second row, we have

$$
p_{A}(x)=(x-1) \cdot\left|\begin{array}{cc}
x-1 & -1 \\
-1 & x-1
\end{array}\right|=(x-1) \cdot\left\{(x-1)^{2}-1\right\}=(x-1) \cdot\left(x^{2}-2 x\right)=x(x-1)(x-2) .
$$

2. The eigenvalues of A. (3 points)

Solution. The eigenvalues of A are the roots of $p_{A}(x)$, which are $0,1,2$.
3. A basis for the eigenspace of each eigenvalue. (4 points)

Solution. E_{0} is the nullspace of $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. A basis for the solution space of this last matrix is $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$, and hence is a basis for E_{0}.
E_{1} is the nullspace of $\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. A basis for the solution space of this last matrix is $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and hence is a basis for E_{1}.
E_{2} is the nullspace of $\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. A basis for the solution space of this last matrix is $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, and hence is a basis for E_{2}.

