MATH 590: QUIZ 7 SOLUTIONS

Name:

For the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, find: 1. The characteristic polynomial $p_A(x)$. (3 points) Solution. $p_A(x) = \begin{vmatrix} x - 1 & 0 & -1 \\ 0 & x - 1 & 0 \\ -1 & 0 & x - 1 \end{vmatrix}$. Expanding along the second row, we have $p_A(x) = (x - 1) \cdot \begin{vmatrix} x - 1 & -1 \\ -1 & x - 1 \end{vmatrix} = (x - 1) \cdot \{(x - 1)^2 - 1\} = (x - 1) \cdot (x^2 - 2x) = x(x - 1)(x - 2).$

2. The eigenvalues of A. (3 points)

Solution. The eigenvalues of A are the roots of $p_A(x)$, which are 0, 1, 2.

3. A basis for the eigenspace of each eigenvalue. (4 points) Solution. E_0 is the nullspace of $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. A basis for the solution space of this last matrix is $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, and hence is a basis for E_0 . E_1 is the nullspace of $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. A basis for the solution space of this last matrix is $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and hence is a basis for E_1 . E_2 is the nullspace of $\begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. A basis for the solution space of this last matrix is matrix is $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and hence is a basis for E_2 .